non-abelian, soluble, monomial
Aliases: C42⋊S3, C22.S4, C42⋊C3⋊2C2, SmallGroup(96,64)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C42 — C42⋊C3 — C42⋊S3 |
C1 — C22 — C42 — C42⋊C3 — C42⋊S3 |
C42⋊C3 — C42⋊S3 |
Generators and relations for C42⋊S3
G = < a,b,c,d | a4=b4=c3=d2=1, ab=ba, cac-1=dad=b, cbc-1=a-1b-1, dbd=a, dcd=c-1 >
Character table of C42⋊S3
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 8A | 8B | |
size | 1 | 3 | 12 | 32 | 3 | 3 | 6 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ4 | 3 | 3 | -1 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ5 | 3 | 3 | 1 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | orthogonal lifted from S4 |
ρ6 | 3 | -1 | 1 | 0 | -1+2i | -1-2i | 1 | -1 | -i | i | complex faithful |
ρ7 | 3 | -1 | -1 | 0 | -1+2i | -1-2i | 1 | 1 | i | -i | complex faithful |
ρ8 | 3 | -1 | -1 | 0 | -1-2i | -1+2i | 1 | 1 | -i | i | complex faithful |
ρ9 | 3 | -1 | 1 | 0 | -1-2i | -1+2i | 1 | -1 | i | -i | complex faithful |
ρ10 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | orthogonal faithful |
(1 2)(3 4)(5 6 7 8)(9 10 11 12)
(1 4 2 3)(5 7)(6 8)(9 10 11 12)
(1 11 7)(2 9 5)(3 10 6)(4 12 8)
(1 7)(2 5)(3 6)(4 8)
G:=sub<Sym(12)| (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,4,2,3)(5,7)(6,8)(9,10,11,12), (1,11,7)(2,9,5)(3,10,6)(4,12,8), (1,7)(2,5)(3,6)(4,8)>;
G:=Group( (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,4,2,3)(5,7)(6,8)(9,10,11,12), (1,11,7)(2,9,5)(3,10,6)(4,12,8), (1,7)(2,5)(3,6)(4,8) );
G=PermutationGroup([[(1,2),(3,4),(5,6,7,8),(9,10,11,12)], [(1,4,2,3),(5,7),(6,8),(9,10,11,12)], [(1,11,7),(2,9,5),(3,10,6),(4,12,8)], [(1,7),(2,5),(3,6),(4,8)]])
G:=TransitiveGroup(12,62);
(1 2)(3 4)(5 6 7 8)(9 10 11 12)
(1 4 2 3)(5 7)(6 8)(9 10 11 12)
(1 11 7)(2 9 5)(3 10 6)(4 12 8)
(1 5)(2 7)(3 8)(4 6)(9 11)(10 12)
G:=sub<Sym(12)| (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,4,2,3)(5,7)(6,8)(9,10,11,12), (1,11,7)(2,9,5)(3,10,6)(4,12,8), (1,5)(2,7)(3,8)(4,6)(9,11)(10,12)>;
G:=Group( (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,4,2,3)(5,7)(6,8)(9,10,11,12), (1,11,7)(2,9,5)(3,10,6)(4,12,8), (1,5)(2,7)(3,8)(4,6)(9,11)(10,12) );
G=PermutationGroup([[(1,2),(3,4),(5,6,7,8),(9,10,11,12)], [(1,4,2,3),(5,7),(6,8),(9,10,11,12)], [(1,11,7),(2,9,5),(3,10,6),(4,12,8)], [(1,5),(2,7),(3,8),(4,6),(9,11),(10,12)]])
G:=TransitiveGroup(12,63);
(5 6 7 8)(9 10 11 12)
(1 3 4 2)(9 12 11 10)
(1 10 7)(2 9 8)(3 11 6)(4 12 5)
(1 7)(2 6)(3 8)(4 5)(9 11)
G:=sub<Sym(12)| (5,6,7,8)(9,10,11,12), (1,3,4,2)(9,12,11,10), (1,10,7)(2,9,8)(3,11,6)(4,12,5), (1,7)(2,6)(3,8)(4,5)(9,11)>;
G:=Group( (5,6,7,8)(9,10,11,12), (1,3,4,2)(9,12,11,10), (1,10,7)(2,9,8)(3,11,6)(4,12,5), (1,7)(2,6)(3,8)(4,5)(9,11) );
G=PermutationGroup([[(5,6,7,8),(9,10,11,12)], [(1,3,4,2),(9,12,11,10)], [(1,10,7),(2,9,8),(3,11,6),(4,12,5)], [(1,7),(2,6),(3,8),(4,5),(9,11)]])
G:=TransitiveGroup(12,64);
(5 6 7 8)(9 10 11 12)
(1 3 4 2)(9 12 11 10)
(1 10 5)(2 9 6)(3 11 8)(4 12 7)
(1 6)(2 5)(3 7)(4 8)(9 10)(11 12)
G:=sub<Sym(12)| (5,6,7,8)(9,10,11,12), (1,3,4,2)(9,12,11,10), (1,10,5)(2,9,6)(3,11,8)(4,12,7), (1,6)(2,5)(3,7)(4,8)(9,10)(11,12)>;
G:=Group( (5,6,7,8)(9,10,11,12), (1,3,4,2)(9,12,11,10), (1,10,5)(2,9,6)(3,11,8)(4,12,7), (1,6)(2,5)(3,7)(4,8)(9,10)(11,12) );
G=PermutationGroup([[(5,6,7,8),(9,10,11,12)], [(1,3,4,2),(9,12,11,10)], [(1,10,5),(2,9,6),(3,11,8),(4,12,7)], [(1,6),(2,5),(3,7),(4,8),(9,10),(11,12)]])
G:=TransitiveGroup(12,65);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10 13 8)(2 11 14 5)(3 12 15 6)(4 9 16 7)
(2 7 10)(3 15 13)(4 11 8)(5 6 14)(9 12 16)
(2 10)(3 13)(4 8)(5 9)(6 16)(12 14)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,13,8)(2,11,14,5)(3,12,15,6)(4,9,16,7), (2,7,10)(3,15,13)(4,11,8)(5,6,14)(9,12,16), (2,10)(3,13)(4,8)(5,9)(6,16)(12,14)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,13,8)(2,11,14,5)(3,12,15,6)(4,9,16,7), (2,7,10)(3,15,13)(4,11,8)(5,6,14)(9,12,16), (2,10)(3,13)(4,8)(5,9)(6,16)(12,14) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10,13,8),(2,11,14,5),(3,12,15,6),(4,9,16,7)], [(2,7,10),(3,15,13),(4,11,8),(5,6,14),(9,12,16)], [(2,10),(3,13),(4,8),(5,9),(6,16),(12,14)]])
G:=TransitiveGroup(16,195);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3 2 4)(5 8 6 7)(9 11)(10 12)(13 14 15 16)(17 18 19 20)(21 23)(22 24)
(1 18 10)(2 20 12)(3 19 11)(4 17 9)(5 14 22)(6 16 24)(7 13 21)(8 15 23)
(1 21)(2 23)(3 22)(4 24)(5 11)(6 9)(7 10)(8 12)(13 18)(14 19)(15 20)(16 17)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,2,4)(5,8,6,7)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,23)(22,24), (1,18,10)(2,20,12)(3,19,11)(4,17,9)(5,14,22)(6,16,24)(7,13,21)(8,15,23), (1,21)(2,23)(3,22)(4,24)(5,11)(6,9)(7,10)(8,12)(13,18)(14,19)(15,20)(16,17)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,2,4)(5,8,6,7)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,23)(22,24), (1,18,10)(2,20,12)(3,19,11)(4,17,9)(5,14,22)(6,16,24)(7,13,21)(8,15,23), (1,21)(2,23)(3,22)(4,24)(5,11)(6,9)(7,10)(8,12)(13,18)(14,19)(15,20)(16,17) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3,2,4),(5,8,6,7),(9,11),(10,12),(13,14,15,16),(17,18,19,20),(21,23),(22,24)], [(1,18,10),(2,20,12),(3,19,11),(4,17,9),(5,14,22),(6,16,24),(7,13,21),(8,15,23)], [(1,21),(2,23),(3,22),(4,24),(5,11),(6,9),(7,10),(8,12),(13,18),(14,19),(15,20),(16,17)]])
G:=TransitiveGroup(24,191);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 6 8 3)(2 5 7 4)(9 24 11 22)(10 21 12 23)(13 19)(14 20)(15 17)(16 18)
(1 10 13)(2 22 19)(3 9 20)(4 21 14)(5 23 16)(6 11 18)(7 24 17)(8 12 15)
(1 17)(2 15)(3 20)(4 14)(5 16)(6 18)(7 13)(8 19)(10 24)(12 22)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,8,3)(2,5,7,4)(9,24,11,22)(10,21,12,23)(13,19)(14,20)(15,17)(16,18), (1,10,13)(2,22,19)(3,9,20)(4,21,14)(5,23,16)(6,11,18)(7,24,17)(8,12,15), (1,17)(2,15)(3,20)(4,14)(5,16)(6,18)(7,13)(8,19)(10,24)(12,22)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,8,3)(2,5,7,4)(9,24,11,22)(10,21,12,23)(13,19)(14,20)(15,17)(16,18), (1,10,13)(2,22,19)(3,9,20)(4,21,14)(5,23,16)(6,11,18)(7,24,17)(8,12,15), (1,17)(2,15)(3,20)(4,14)(5,16)(6,18)(7,13)(8,19)(10,24)(12,22) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,6,8,3),(2,5,7,4),(9,24,11,22),(10,21,12,23),(13,19),(14,20),(15,17),(16,18)], [(1,10,13),(2,22,19),(3,9,20),(4,21,14),(5,23,16),(6,11,18),(7,24,17),(8,12,15)], [(1,17),(2,15),(3,20),(4,14),(5,16),(6,18),(7,13),(8,19),(10,24),(12,22)]])
G:=TransitiveGroup(24,192);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3 6 7)(2 4 5 8)(9 15 11 13)(10 16 12 14)(17 21)(18 22)(19 23)(20 24)
(1 14 21)(2 11 17)(3 15 20)(4 12 24)(5 9 19)(6 16 23)(7 13 18)(8 10 22)
(1 23)(2 19)(3 24)(4 20)(5 17)(6 21)(7 22)(8 18)(9 11)(10 13)(12 15)(14 16)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,6,7)(2,4,5,8)(9,15,11,13)(10,16,12,14)(17,21)(18,22)(19,23)(20,24), (1,14,21)(2,11,17)(3,15,20)(4,12,24)(5,9,19)(6,16,23)(7,13,18)(8,10,22), (1,23)(2,19)(3,24)(4,20)(5,17)(6,21)(7,22)(8,18)(9,11)(10,13)(12,15)(14,16)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,6,7)(2,4,5,8)(9,15,11,13)(10,16,12,14)(17,21)(18,22)(19,23)(20,24), (1,14,21)(2,11,17)(3,15,20)(4,12,24)(5,9,19)(6,16,23)(7,13,18)(8,10,22), (1,23)(2,19)(3,24)(4,20)(5,17)(6,21)(7,22)(8,18)(9,11)(10,13)(12,15)(14,16) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3,6,7),(2,4,5,8),(9,15,11,13),(10,16,12,14),(17,21),(18,22),(19,23),(20,24)], [(1,14,21),(2,11,17),(3,15,20),(4,12,24),(5,9,19),(6,16,23),(7,13,18),(8,10,22)], [(1,23),(2,19),(3,24),(4,20),(5,17),(6,21),(7,22),(8,18),(9,11),(10,13),(12,15),(14,16)]])
G:=TransitiveGroup(24,193);
(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3 2 4)(5 7 8 6)(13 16 15 14)(17 20 19 18)
(1 14 11)(2 16 9)(3 15 10)(4 13 12)(5 17 24)(6 20 21)(7 18 23)(8 19 22)
(1 24)(2 22)(3 21)(4 23)(5 11)(6 10)(7 12)(8 9)(13 18)(14 17)(15 20)(16 19)
G:=sub<Sym(24)| (9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,2,4)(5,7,8,6)(13,16,15,14)(17,20,19,18), (1,14,11)(2,16,9)(3,15,10)(4,13,12)(5,17,24)(6,20,21)(7,18,23)(8,19,22), (1,24)(2,22)(3,21)(4,23)(5,11)(6,10)(7,12)(8,9)(13,18)(14,17)(15,20)(16,19)>;
G:=Group( (9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,2,4)(5,7,8,6)(13,16,15,14)(17,20,19,18), (1,14,11)(2,16,9)(3,15,10)(4,13,12)(5,17,24)(6,20,21)(7,18,23)(8,19,22), (1,24)(2,22)(3,21)(4,23)(5,11)(6,10)(7,12)(8,9)(13,18)(14,17)(15,20)(16,19) );
G=PermutationGroup([[(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3,2,4),(5,7,8,6),(13,16,15,14),(17,20,19,18)], [(1,14,11),(2,16,9),(3,15,10),(4,13,12),(5,17,24),(6,20,21),(7,18,23),(8,19,22)], [(1,24),(2,22),(3,21),(4,23),(5,11),(6,10),(7,12),(8,9),(13,18),(14,17),(15,20),(16,19)]])
G:=TransitiveGroup(24,194);
C42⋊S3 is a maximal subgroup of
C42⋊D6 (C4×C12)⋊S3 C42⋊D15
C42⋊S3 is a maximal quotient of C23.7S4 C23.8S4 C23.9S4 C42⋊D9 (C4×C12)⋊S3 C42⋊D15
action | f(x) | Disc(f) |
---|---|---|
12T62 | x12-13x10+59x8-109x6+73x4-16x2+1 | 220·194·1034 |
12T63 | x12-6x10+104x6+93x4+18x2+4 | 234·340·474 |
12T64 | x12-x8+9x4-1 | -240·138 |
12T65 | x12-24x10+221x8-976x6+2108x4-2016x2+676 | 246·76·132·178 |
Matrix representation of C42⋊S3 ►in GL3(𝔽5) generated by
1 | 0 | 2 |
3 | 2 | 4 |
1 | 0 | 0 |
0 | 1 | 0 |
2 | 1 | 0 |
4 | 3 | 2 |
4 | 3 | 2 |
3 | 0 | 2 |
0 | 0 | 1 |
1 | 2 | 3 |
0 | 4 | 0 |
0 | 0 | 4 |
G:=sub<GL(3,GF(5))| [1,3,1,0,2,0,2,4,0],[0,2,4,1,1,3,0,0,2],[4,3,0,3,0,0,2,2,1],[1,0,0,2,4,0,3,0,4] >;
C42⋊S3 in GAP, Magma, Sage, TeX
C_4^2\rtimes S_3
% in TeX
G:=Group("C4^2:S3");
// GroupNames label
G:=SmallGroup(96,64);
// by ID
G=gap.SmallGroup(96,64);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-2,2,49,218,116,230,147,801,69,2164,730,1307]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^3=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=b,c*b*c^-1=a^-1*b^-1,d*b*d=a,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊S3 in TeX
Character table of C42⋊S3 in TeX